Effective pressure and bubble generation in a microfluidic T-junction.
نویسندگان
چکیده
To improve the existing trial-and-error process in designing a microfluidic T-junction, a systematic study of the geometrical (mainly the channel length) effects on the generated bubbly/slug flow was conducted to figure out basic design guidelines based on experimental and theoretical analyses. A driving system with dual constant pressure sources, instead of the commonly used dual constant volume-rate sources (such as two syringe pumps), was chosen in this study. The newly proposed effective pressure ratio (P(e)*) has revealed its advantages in excluding the surface tension effect of fluids. All the data of generated bubbly/slug flow for a given geometry collapse excellently into the same relationship of void fraction and effective pressure ratio. This relationship is insensitive to the liquid viscosity and the operation range is strongly affected by the geometrical effect, i.e., the channel length ratio of downstream to total equivalent length of the main channel in a T-junction chip. As to the theoretical design and analysis of gas-liquid-flow characteristics in a microfluidic T-junction, which is still sporadic in the literature, the proposed semi-empirical model has successfully predicted the operation boundaries and the output flow rate of bubbly/slug flow of different investigated cases and demonstrated its usability.
منابع مشابه
Circuit model for microfluidic bubble generation under controlled pressure
We explore the microfluidic generation of bubbles in a flow-focusing junction using a pressure-controlled device rather than the more common flow ratecontrolled devices. This device is a prototype for extending microfluidic drop generation methods to molten polymers. We show that the bubble generation process is highly sensitive to pressure: small changes in pressure induce large changes in bub...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کاملUse of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria
We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 ll/s/mm of membrane area. The device involves a bubble genera...
متن کامل3D-CFD and experimental comparison of two-phase ow generation in a micro T-junction
This paper presents a 3D numerical study of the bubble generation process in a T-junction, performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Numerical results on bubble generation frequency, bubble velocity, volume void fraction, bubble volume, and characteristics bubble lengths are compared with experimental data. Additionally, a new simple tting for the b...
متن کاملFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 11 20 شماره
صفحات -
تاریخ انتشار 2011